Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria

*To whom correspondence should be addressed. E-mail: tchazen@lbl.gov

The biological effects and expected fate of the vast amount of oil in the Gulf of Mexico from the Deepwater Horizon blowout are unknown due to the depth and magnitude of this event. Here, we report that the dispersed hydrocarbon plume stimulated deep-sea indigenous γ-proteobacteria that are closely related to known petroleum-degraders. Hydrocarbon-degrading genes coincided with the concentration of various oil contaminants. Changes in hydrocarbon composition with distance from the source and incubation experiments with environmental isolates demonstrate faster then expected hydrocarbon biodegradation rates at 5°C. Based on these results, the potential exists for intrinsic bioremediation of the oil plume in the deep-water column without substantial oxygen drawdown.

Assessing the environmental and public health impacts of the Deepwater Horizon blowout is difficult due to the extreme depth of the blowout and the large volumes of oil released. Moreover, the effectiveness of the primary initial mitigation strategy (e.g. injecting the oil dispersant COREXIT 9500 directly at the well head in a water depth of 1,544 meters) is difficult to assess despite initial analysis of its potential toxicity (1). An optional strategy for remediation of the deep underwater plume is to utilize the intrinsic bioremediation potential of deep sea microorganisms to degrade the oil. This strategy depends on a number of environmental factors including a favorable response of indigenous microorganisms to an increased concentration of hydrocarbons and/or dispersant.

To determine the impact of the deep hydrocarbon plume on the marine microbes residing in the plume and the rates of hydrocarbon biodegradation, we collected deepwater samples from two ships between 25 May 2010 and 2 June 2010. In total, we analyzed the physical, chemical and microbiological properties (fig. S1) of 17 deepwater samples from across the Gulf of Mexico (2).

We detected a deep-sea oil plume from 1099-1219 m at distances of up to 10 km from the wellhead (fig. S2). Due to its composition (fig. S3), the plume was likely dispersed MC252 oil, a conclusion also reached by Camilli et al (3). At most locations where the plume was detected there was a slight decrease in oxygen concentration indicative of microbial respiration and oxygen consumption as would be expected if the hydrocarbons were being catabolized (Fig. 1). Oxygen saturation within the plume averaged 59% while outside the plume it was 67%. Extractable hydrocarbons (e.g. octadecane) ranged from non-detectable in the non-plume samples to 9.21 µg/L in plume samples (table S1). Volatile aromatic hydrocarbons were significantly higher in the plume (mean 139 µg/L) than in the non-plume samples from similar depths. The average temperature within the plume interval was 4.7°C and pressure was 1136 dB. Soluble orthophosphate, total ammonia-N, and nitrate-N were detected at similar concentrations within and outside the plume interval (table S1).

The dispersed oil plume affected both microbial cell densities and composition (Fig. 1, table S1). Cell densities in the plume (5.51±0.33x10^4 cells/ml) were higher than outside the plume (2.73±0.05x10^4 cells/ml). Phospholipid fatty acid analysis also confirmed an increase in microbial biomass in the plume (0.57 pm lipids/ml) vs. outside the plume (0.23 pm lipids/ml) (table S1). In addition to the observed increase in cell densities, PhylorChip 16S rRNA microarray analysis (fig. S4) suggests the plume significantly altered the microbial community composition and structure. Ordination of bacterial
and archaeal 16S rRNA gene composition revealed two distinct clusters of samples: one composed entirely of plume samples with detected oil and the other of non-plume samples (Fig. 2). No other physical or chemical factors other than hydrocarbons were significantly different between these groups (table S1), indicating that microorganisms were responding directly to the presence of dispersed oil.

In plume samples, PhyloChip analysis revealed that 951 distinct bacterial taxa in 62 phyla were present (fig. S4), but only sixteen distinct taxa that were all classified as γ-Proteobacteria were significantly enriched in the plume relative to non-plume samples (table S2). Nearly all of these enriched taxa have representatives that are known to degrade hydrocarbons or are stimulated by the presence of oil in cold environments (table S2). Plume-enriched bacteria include many psychrophilic and psychrotolerant species that have been observed in low temperature marine environments (table S2) (4–6). Although cell densities are higher in the plume, taxonomic richness was lower and the diversity of enriched bacteria was restricted to a few γ-Proteobacteria.

Cloning and sequencing revealed that deep sea plume samples from stations BM58 (~10.6 km from the MC252 well head) and station OV011 (~1.5 km from the well head) were dominated by the order Oceanospirillales in the γ-proteobacteria. Over 90% of all sequences in both plume samples (10 km between sampling stations) belonged to a single operational taxonomic unit (OTU) that is most closely related to Oceanospirillales (Fig. 3). In a control sample (site OV003) collected 39.1 km southwest of the wellhead this same OTU represented only 5% of all sequences analyzed (Fig. 3). In addition, this dominant taxon was detected in all 9 oil plume samples analyzed by the PhyloChip, and was significantly enriched relative to background deep seawater with no oil (table S1). The most closely related cultured representatives to the dominant OTU in plume samples were Spongiispira norvegica (95% similar) and Oceaniserpentilla haliotidis (94% similar). The observed sequences in the plume samples form a clade with two distinct Oceanospirillales groups. One of these groups is largely composed of known psychrophilic hydrocarbon degraders and microorganisms from hydrocarbon dominated environments (5, 7, 8), including Oleispira antarctica, Thalassolituus oleivorans, and Oleiphilus messiniensis (fig. S5).

The three dominant phospholipid fatty acids detected in the plume samples were the C16:0, C16:1w7c, and C18:1w9c (table S3), which have been reported as the dominant lipids in the Oleispira antarctica, in some strains of the Oceaniserpentilla haliotidis (4), and in a consortium of marine hydrocarbon-degrading bacteria (9). 18:1w9t/c ratios that have been reported to increase in oil contaminated environments (10, 11) were slightly elevated in plume samples (average 0.21) compared to non-plume samples (average 0.14) but were not strongly correlated with oil concentrations (table S1). Multivariate analysis of PLFA profiles from each sample revealed distinct clustering of plume and non-plume samples similar to community analysis of microarray data (Fig. 2).

Microscopic examination of cells collected within the plume also revealed that the dominant cell type exhibits a distinctive morphology typical of the Oceanospirillales (Fig. 4). Total bacterial densities were also significantly correlated with MC252 alkane concentration in the plume (fig. S5). Synchrotron radiation–based Fourier-transform infrared (SR-FTIR) spectromicroscopy revealed absorptions at ~1730, ~1610 and ~1150 cm⁻¹ that are associated with biomolecule–rich regions of a cellular floc (Fig. 3). These absorption features are well described for the carbonyl (C=O), nitrogen oxides, and sulfur oxides vibration modes (12), and they are characteristic of oil degradation products (13). These SR-FTIR spectra are not consistent with those typically found in marine macroaggregates (14), nor are they consistent with non-plume samples at the same depth.

To understand the distribution of oil-degrading genes within the plume, five samples (BM053, BM054, BM057, BM058, BM064) from the MC252 dispersed oil plume as well as five control samples (OV003, OV004, OV009, OV013 and OV014) from the non-contaminated zone were analyzed with GeoChip-based functional array (table S4) (15, 16). Altogether, 4,000-5,000 functional genes were detected per sample, among which 1652 genes are involved in hydrocarbon degradation. Detrended correspondence analysis (DCA) showed that microbial community functional composition and structure was considerably different between oil-plume and non-plume control samples (fig. S7), which is consistent with PhyloChip analysis. A large number of genes involved in hydrocarbon degradation were significantly (p <0.05 or 0.01) increased in oil plume samples (figs. S8, S9).

Statistical analysis by Mantel test showed that the overall microbial functional composition and structure were significantly correlated with many key oil contaminants, including isopropylbenzene, n-propylbenzene, tert-butylbenzene, 1,2,4-trimethylbenzene, p-isopropyltoluene, n-butylbenzene, and naphthalene (table S5). Analysis based on individual genes showed that the changes of many hydrocarbon degradation genes are significantly correlated with the concentrations of oil contaminants (table S6). For instance, the phdCI gene encoding carboxylate isomerase for naphthalene degradation correlates with several hydrocarbons (table S6). These results indicated that a variety of hydrocarbon-degrading populations exist in the deep-sea plume and that the microbial communities appear to be undergoing rapid dynamic adaptation in response to oil contamination. These results also imply that there exists a
potential for intrinsic bioremediation of oil contaminants in the deep-sea, and that oil-degrading communities could play a significant role in controlling the ultimate fates of hydrocarbons in the Gulf.

The bioremediation potential largely depends on the rates of biodegradation in the plume. We calculated maximum biodegradation rates using two data sets from the field and two from laboratory microcosms representing concentrations of C13-C26 n-alkanes (table S7). The degradation rate coefficients and half-life values (table S7, figs. S10 and S11), calculated from the alkanes data from these four sources using the first order rate equation (10, 17), are similar to those reported in the literature for similar temperature and field conditions (10, 17–19). Despite the varying field and microcosm conditions, the oil half-lives are 1.2 - 6.1 days (table S7). The field half-lives should in part reflect the effect of mixing and dilution, but the similarity of the rate of disappearance of alkanes in the plume to the rates observed in the laboratory suggest it is possible that the actual degradation of alkanes lies within this range. The possibility that biodegradation largely controls the disappearance of alkanes is also supported by the preferential degradation of short-chain alkanes, as represented in the increase in the ratio of C26/C15 alkanes over 10 km, from less than 1 to more than 3 (fig. S18). For each data set, decay constants were similar for all alkanes measured in all samples, with the exception of the plume samples from the non-lipid fraction collected on 0.2 μm filters. Because these results represent extraction from free phase oil or oil absorbed to the membrane filter, it is likely the higher rates seen for the shorter chain alkanes are due to additional losses in collected sample due to dissolution into sea water; however, there is a correlation of longer chain alkane concentration with cell densities in the plume (fig. S6). The oil biodegradation rates reported here at 5°C are explained in part by the relatively low component that is more readily degraded, the dispersed nature of the deep plume (small oil particle size), the low overall concentrations of oil in the deep plume, and the frequent episodic oil leaks from natural seeps in this area that the deep-sea microbial community may have adapted to over long periods of time.

References and Notes
2. Materials and methods are available on Science Online.

19. O. G. Brakstad, K. Bonaunet, Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation. Biodegradation 17, 71 (Feb, 2006).

21. This work was supported by a subcontract from the University of California at Berkeley, Energy Biosciences Institute to Lawrence Berkeley National Laboratory under its U.S. Department of Energy contract DE-AC02-05CH11231, and by the University of Oklahoma Research Foundation. The SR-FTIR work was conducted at the infrared beamline at the Advanced Light Source which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy. We thank T. Pollard, K. Keller, M. Carrera, P. Willems, P. Carragher, P. Collinson, S. Lisiecki, P. Vaishampayan, R. Graham, J. Wong, N. Duncan, D. Long, and N. Tam for logistical and technical support. We also thank the Captain, crew, and science teams aboard the R/V Ocean Veritas and the R/V Brooks McCall. The NCBI accession numbers of the 16S rRNA genes retrieved from clone library analyses are HM587888, HM587889, and HM587890. Sequences for 16s rRNA are also available online through Greengenes at greengenes.lbl.gov.

Supplementary Online Material
www.sciencemag.org/cgi/content/full/science.1195979/DC1

Methods
Figs. S1 to S18
Tables S1 to S8
References

2 August 2010; accepted 20 August 2010
Published online 24 August 2010; 10.1126/science.1195979
Include this information when citing this paper.

Fig. 1. Characteristic depth profiles of cell density, fluorescence, and dissolved oxygen for distances from the source BM53, BM57, BM58 and one non-plume site BM61. (diamonds = cell density)

Fig. 2. Microbial community analysis of deepwater plume and non-plume samples. Differences in composition of (A) 16S rRNA gene sequences measured by PhyloChip and (B) phospholipid fatty acids were analyzed using nonmetric multidimensional scaling ordination of Bray-Curtis distances (stress = 3.98 and 4.55, respectively). Plume and non-plume communities were significantly different as determined by permutational analysis of variance (p = 0.005 for both) and delineated with lines for clarity.

Fig. 3. SR-FTIR images (~60 mm by 60 mm) showing the distribution of microorganisms, oil, and oil degradation products in a “floc”. Distribution heat map of the protein amide II vibration modes at ~1542 cm\(^{-1}\), and the carbohydrates vibration modes at ~1000 cm\(^{-1}\) (20).

Distribution heat map of alkane C-H vibration modes in oil from MC252. Distribution heat map of carbonyl (C=O) vibration modes at ~1730 cm\(^{-1}\) in oil oxidation products, of nitrogen oxides vibration modes at ~1610 cm\(^{-1}\) in nitration products, and of sulfur oxides vibration modes at ~1150 cm\(^{-1}\) in sulphation products. Scale bars = 10 micrometers.

Fig. 4. A. Dominant bacteria at 1099-1219 m, SEM and acridine orange stain inset with distance from source. B. Neighbor joining tree showing the phylogenetic relationships of the dominant bacterium in deep-sea plume samples. Relative abundance of the dominant bacterium was 90-95% of plume samples and 5% of the non-plume sample (shown in parenthesis). Psychrophilic, hydrocarbon degrading Bacteria, as well as uncultured organisms from low temperature, hydrocarbon dominated environments are shown in blue. Organisms shown in red are either known hydrocarbon degraders or are from hydrocarbon-dominated ecosystems, but are not from low temperature environments. Bootstrap values based on 1000 replicates of ≥ 50% are shown at branch points. *Aquifex pyrophilus* (GenBank accession M83548) was used as the outgroup.
SR-FTIR analysis of Sample # OV01105

Floc riched in oil degradation products

Proteins (N-H) Carbohydrates

Microbe-rich floc with oil degradation products

Alkane (C-H) Oxidation products

Nitration products Sulphation products

A typical spectrum of oil from MC252

Scale bars = 10 micrometers
A

BM58 10 km

BM54 1.3 km

B

- *Bermanella marisrubri* strain RED65, AY136131
 - *Oceaniserpentina haliodis*, AM747817
 - Uncultured Oleispira sp. clone F3C18, AY697896
 - *Spongiispira norvegica*, AM117931
 - Uncultured gamma proteobacterium clone SS1_B_07_22, EU050833
 - Uncultured Oceanospirillales clone OV00301-06 (non-plume, 5% of clones), HM587888
 - Uncultured Oceanospirillales clone BM580104-10 (plume, 95% of clones), HM587889
 - Uncultured Oceanospirillales clone OV01102/03-20 (plume, 90% of clones), HM587890
 - *Oleispira antarctica*, AJ426421
 - Oleispira sp. ice-oil-381, DQ521390
 - Oleispira sp. gap-e-97, DQ530482
 - Uncultured bacterium clone ARKDM-13, AF468253
 - Uncultured bacterium clone ARKDM-38, AF468248
 - *Thalassolituus oleivorans*, AM279755
 - Uncultured bacterium clone FS140-103B-02, DQ513004
 - *Oleiphipalus messinensis*, AJ302699