How to Use the Pumping Lemma
for Regular Languages

When you are given a language \(L \) and are using the pumping lemma to prove that it is not regular, do this…

1. Assume \(L \) is regular.

 If it is, then the P.L. would apply. So, there is some \(n \) such that any string longer than \(n \), say the string \(x \), can be broken up into substrings \(u, v, w \) such that

 - \(|uv| \leq n\) — which means the pumping part, \(v \), lies within the first \(n \) characters
 - \(|v| > 0\) — which means there is at least one character in \(v \)
 - \(uvw\) is the string \(x \)
 - And \(uv^mw\) is also in \(L \) for any \(m \geq 0\) — that is, pumping at \(v \) won’t take the string out of the language.

 The key observation is that this is true for any sufficiently long \(x \). You will pick a particular one from which you can get a contradiction.

2. Choose some string longer than \(n \), where \(n \) is the (unknown) value guaranteed to exist by the P.L.

 Choose this string with a view to what you’re about to do, so you can pump it up and derive a contradiction.

3. You know \(v \) is within the first \(n \) characters, so take your string and pump it up (or deflate it) to get a new string.

4. Show that this new string is \emph{not} in \(L \).

 Since the P.L. says it \emph{is} in \(L \) if \(L \) is regular, it must be the case that \(L \) is \emph{not} regular.

5. You are done. Celebrate.