Combining Bacterial Fingerprints

James A. Foster
Biological Sciences
Bioinformatics & Computational Biology
Institute for Bioinformatics & Evolutionary Studies (IBEST)
5 May 2014
Who’s world is this?

We are one out of 2 million named species (5-100m est.)
Ignores 1 Billion species Bacteria!

Million years on earth
3600 Bacteria
 500 Fish
 130 Flowers
 190 Mammals
 0.2 Humans

Bacterial inventions
 Oxygen
 Photosynthesis
 Nitrogenation
 the Nucleus
 Mitochondria
Whose world are you?

90% of the cells in your body are bacterial

≥ 99.99% of the gene products in your body are bacterial

Biologically, you are mostly a bacterial ecosystem
The dark microbiome

✧ Up to 1 Billion species, about 5,000 known
 • 10K species in a gram of soil
 • 1cm2 intestine: bacteria > all humans, ever
 • Half of all Phyla undiscovered (human vs sponge)

✧ Great plate count anomaly: approx. 97% of bacteria cannot be grown

Bacterial Fingerprints – UI, CS (©2014, James A. Foster)
The dark microbiome

- Great plate count anomaly: approx. 97% of bacteria cannot be grown
- What we do know is *highly biased*
All bacteria:

- Translate genome to proteins
- Using *ribosome*: RNA + proteins
- Small subunit attaches first
- Coded by 16S gene
16S small subunit fingerprints

Secondary structure
Variable/conserved regions
V1 – V9: Fingerprints
High throughput fingerprinting

1. Get “every” DNA molecule in a sample: break cells up, wash, filter
2. Isolate fingerprint regions from all bacteria
3. Sequence them all

10–20 million fingerprint sequences

Infer how many of which species were there
Interpreting fingerprint data

1. Compute similarity (distance) between fingerprint sequences
2. Cluster, call a cluster a “species”
3. Number of clusters is species richness
4. Size of clusters is species abundance
Problem – Solution

- Fingerprints evolve at different rates: which to use?
- Varies with species: need to know who is there to choose best fingerprint!

Use multiple fingerprints!

- How to compare distances between sequences from unknown species?
- With multiple fingerprints with unknown biases?
Solution: Find registration marks

Translate distances using reference points from known fingerprints

Registration marks

Observed image
Solution: Use image registration

Translate distances using reference points from known fingerprints
Solution: Find registration marks

- Determine distances for known full 16S sequences
- Extract a fingerprint
- Determine distances for reference fingerprints (anchors)

- Known full 16S sequences
- Fingerprint subsequences
Solution: add empirical reads

Combine DNA sequences with (known) anchors

Compute distances from reads to all sequences

- Actual reads
- Fingerprint sequence

Observed image
Solution: match registration

Map anchors back to known registration marks
Solution: Move empirical data
Carry empirical reads along
Solution: combine fingerprints

Repeat for multiple fingerprints

Remove outliers

Cluster results
Current activity

- Find efficient 2D mapping: nonmetric multidimensional scaling (NMDS)
- Develop fast distance computation algorithms: preclustering plus hashing
- Develop accuracy statistics: perturbation analysis
- Determine how many “registration sequences” are best for 20 million empirical points
- Precompute registration libraries for different sample types (soil, human microbiome, ocean, etc.)
- Determine accuracy with simulation and known sequences
Future work

✧ Parallelize: use reference triangles
✧ What to do with outliers?
✧ What do cluster shapes/density say about fingerprints, species, ecology?
 • Which fingerprints are good for which species?
 • Which fingerprints are most misleading in given environments?
✧ How are clusters and evolution related?
✧ Application to empirical data: milk project
✧ Many more!
Acknowledgements

Funding

- NSF DBI0939454 BEACON Evolution in Action
- NSF IAA 041485301 “What is normal milk?”
- NIH P20GM16448 COBRE center for research in processes of evolution

Institute for Bioinformatics and Evolutionary Studies (IBEST)

- IBEST Computational Resources Core

Students

- Ilya Zhbnanikov, BCB PhD Candidate
- Janet Williams, BCB PhD student
- Daniel Beck, BCB PhD