Stochastic Algorithms and Approximations

or

You Can’t Even Get Close to There from Here

James A. Foster

University of Idaho
Department of Computer Science
Laboratory for Applied Logic
Outline

• Some hard problems

• How hard they are

• Approximating their solutions

• Limits to approximation

• Relations to evolutionary computation
Program Packing

Fit as many blocks as possible into two fixed capacity bins

Items

Bin
(capacity 15 each)
Maximum Clique

Find largest set of nodes such that all nodes in the set are connected to all the others
Both are NP hard

- No $O(n^k)$ solution known

- Best known: $O(2^n)$

- Fast solution exists iff $P = NP$

- One has fast solution iff both (and hundreds more) do

So approximate!
Program Packing Approximation

Sort non-Decreasing
Add in Order

O(n log n) time
|Best - This| <= 1

Bin Bin
(capacity 15 each)
Maximum Clique

No simple approximations
How good are approximations?

Problem: Π

Algorithm A_Π returns $A_\Pi(x)$

Optimal answer: $Opt_\Pi(x)$

Accuracy of $A_\Pi = \alpha$ where

$$acc(A_\Pi) = \frac{A_\Pi(x)}{Opt_\Pi(x)} \in O(\alpha(|x|))$$

AppH(α):

$$\{L : \text{There is an } A_L \text{ with accuracy } \alpha\}$$
Some Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>$a(n)$</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>1</td>
<td>Pack maximum number of programs onto two disks</td>
</tr>
<tr>
<td>TSP</td>
<td>$2n$</td>
<td>Find minimum cost Hamiltonian cycle</td>
</tr>
<tr>
<td>MaxClique</td>
<td>n^c</td>
<td>Determine the maximum subgraph all of whose nodes are pairwise adjacent.</td>
</tr>
<tr>
<td>ChrNum</td>
<td>n^c</td>
<td>Determine the minimum number of colors needed to color each vertexes so that no adjacent vertexes are the same color</td>
</tr>
<tr>
<td>DomSet</td>
<td>$c \log n$</td>
<td>Find the minimum collection of vertexes such that all other vertexes are adjacent to one of these</td>
</tr>
<tr>
<td>VCover</td>
<td>$1 + c$</td>
<td>Determine the minimum number of vertexes whose removal would eliminate all edges</td>
</tr>
<tr>
<td>StTree</td>
<td>$1 + c$</td>
<td>Determine the minimum number of edges in a subtree which spans the input graph</td>
</tr>
</tbody>
</table>
Is there a fast, good algorithm for MC?

Theorem 1 (almss) *There is a constant* c *such that a deterministic, polynomial time algorithm* A_{MC} *with accuracy* $|x|^{-c}$ *exists iff* $P = NP$

In other words: “Only if pigs could fly”
Proof sketch of Theorem 1

Lemma 2 (almss) For any \(L \in \text{NP} \) and any \(x, x \in L \) iff

1. there is a small ‘proof’
2. which can be verified with high confidence
3. by a probabilistic, polynomial time, verifier
4. which checks a fixed number of bits
5. and uses \(O(\log|x|) \) random bits
Proof sketch of Theorem 1 (cont’d)

Det., poly time algorithm for any \(L \in \text{NP} \):

1. Construct the “proof” that \(x \in L \)

2. Create a “spot check” graph \(G \):
 (a) Node for every possible bit checked (\(O(1) \))
 (b) And every bit found (\(O(1) \))
 (c) And every set of random bits (\(O(2^{\log |x|}) \))

3. Connect all consistent spot check nodes

4. Find the largest clique in \(G \), approximation with accuracy \((n^{-c}) \) suffices

\(G \) has large clique iff verifier accepts, \(x \in L \)
Is there a fast algorithm for MC which is pretty good most of the time?

Theorem 3 (Foster) There is a constant c such that a probabilistic, polynomial time algorithm A_{MC} exists such that

$$
\Pr \left[\text{acc}(A) \geq n^{-c} \right] \geq 1/2
$$

iff $NP = RP$

Where RP is problems with probabilistic, polynomial time solutions with one sided error.

In other words: “Only if (small) pigs could fly”
Proof sketch of Theorem 3
1-sided, prob, poly time algorithm for any $L \in \text{NP}$:

1. Construct “proof” that $x \in L$

2. Create “spot check” graph G as before

3. Approximate largest clique in G, with probability at least $1/2$
 - G has large clique iff verifier would accept proof (iff $x \in L$)
 - In step 3, accuracy (n^{-c}) suffices
 - If G has large clique, probability of finding it is greater than $1/2$. If not, it can’t be found. So this is one-sided.
Relation to Evolutionary Computation

EC approaches are stochastic approximations. The theorem says that there are instances of MaxClique for which EC will always fail to produce good results—regardless of representation and fitness evaluation.

Questions

- What problems are hard for EC?
- Can we quantify hardness?
- What instances are hard?
- Why?
Research Program

Our hypothesis: EC hardness is directly related to approximation hardness

- Implement ECs for problems of differing approximation complexity
- Analyze effectiveness for these problems
- Look for hard instances
- Characterize these theoretically
Conclusions

- Sometimes, it’s hard to get good approximations
- Even with evolutionary computation
- Some problems are harder than others
- Understanding this will tell us when to use EC, and when not to