CS 590 Theory of Computation: Spring 1999
Homework 0

Due 25 January 1999 (Lecture 6)

Problems from the text are denoted by C or BC, depending on whether they are from the Cutland text or from the Bovet and Crescenzi text, followed by the chapter and problem number, separated by a period. For example, C 2.3 3 is problem 3 for chapter 2, section 3 of Cutland.
Question 1 (C 1.3.3 a,b,c pg. 21) Show that the following functions are computable by devising programs that will compute them:

(a) \(f(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{otherwise} \end{cases} \)

(b) \(f(x) = 5 \)

(c) \(f(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise} \end{cases} \)

Answer

(a) \(f(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{otherwise} \end{cases} \)

This program uses our convention that \(r_2 = 0 \) for this 1-ary function \(f \).

\[
P = \begin{cases}
J(1, 2, 0), & \text{if } r_1 = r_2 = 0 \text{ then halt} \\
Z(1), S(1) & \text{else set } r_1 = 0 + 1 = 1
\end{cases}
\]

(b) \(f(x) = 5 \)

\[
P = (Z(1), S(1), S(1), S(1), S(1), S(1))
\]

Notice that the program would be incorrect without the \(Z(1) \), since without that it would compute \(f(x) = x + 5 \).

(c) \(f(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise} \end{cases} \)

This program stores \(x \) into \(R_3 \), compares \(x \) and \(y \) (now in \(R_3 \) and \(R_2 \)), then returns the appropriate value. The statement numbers are listed only for convenience.

\[
P = \begin{cases}
T(1, 3), & \text{save } r_1 \text{ in } R_3 \\
Z(1), & \text{set up to return zero} \\
J(3, 2, 0), & \text{if } x = r_3 = r_2 \text{ then return zero} \\
S(3) & \text{else return one}
\end{cases}
\]
Question 2 (C 1.3.3 pg. 22) Suppose that \(P \) is a program without any jump instructions. Show that there is a number \(m \) such that either \(f^{(1)}_{m}(x) = m \) for all \(x \), or \(f^{(1)}_{m}(x) = x + m \) for all \(x \).

Answer Since \(f \) is a 1-ary function, we may assume that \(r_2, r_3, \ldots \) are all equal to zero.

Since there are no jump instructions, the instructions in \(P \) are executed once, in order. Also, let \(P = (I_1 \cdots I_n) \) (that is, assume \(P \) has \(n \) instructions).

Let \(k \) be the greatest instruction index such that \(I_k \) is either \(S(1) \) or \(T(m, 1) \) for some \(m > 1 \), and \(k = 0 \) if there are no such instructions (that is, the \(k \)th instruction is the last that could possible set \(R_1 \) to zero). Further, suppose there are \(m \geq 0 \) \(S(1) \) instructions in \(I_{k+1} \cdots I_n \).

If \(k > 0 \) then \(I_k \) resets \(r_1 \) to zero, and the following \(m \) \(S(1) \) instructions increment it \(m \) times, so that the program will return \(m \) for all inputs.

On the other hand, if \(k = 0 \), then the input value \(x \) is incremented \(m \) times in \(P \), so the program returns \(x + m \) for all inputs.
Question 3 (C 1.4.3 a,b,c pg. 23) Show that the following predicates are decidable.

(a) “$x < y$”

(b) “$x \neq 3$”

(c) “x is even”

Answer

For each predicate M, we construct a program to compute C_M.

(a) “$x < y$”

This program searches for the value of the lesser of x and y, and returns a one if that value equals x and a zero otherwise. It uses R_3 as a counter and R_4 (initially zero) as the return value.

(b) “$x \neq 3$”

This program sets r_2 to three, then compares this to the input and returns the appropriate value. We use the convention that $r_k = 0$ for all $k > \rho(P) = 2$ (we only use registers R_1 and R_2).

(c) “x is even”

This program scans for the value of x and returns the appropriate value.
Question 4 Show that the predicates in the last question are computable.

Answer

You can’t. Predicates are *decidable*, only functions are *computable*.