CS 590 Theory of Computation: Spring 1997
Homework 1

Due 3 February 1997 (Lecture 5)

Problems from the text are denoted by C or BC, depending on whether they are from the Cutland text or from the Bovet and Crescenzi text, followed by the chapter and problem number, separated by a period. For example, C 2.3.3 is problem 3 for chapter 2, section 3 of Cutland.

Question 1 (C 2.3 1a) Without writing any programs, show that for every \(m \in N \) the following functions are computable:

1. \(m \) (recall that \(m(x) = m \), for all \(x \). That is, \(m \) is the constant function equal to the number \(m \) everywhere.)

2. \(mx \) (That is, \(f(x) = mx \).)

Question 2 (C 2.3 2) Suppose that \(f(x, y) \) is computable, and that \(m \in N \). Show that the function \(h(x) = f(x, m) \) is computable.

Question 3 (C 2.4 1a,b,f) Show that the following functions are computable:

a. Any polynomial function \(\sum_{i=0}^{n} a_i x^i \), where each \(a_i \) is in \(N \).

b. \([\sqrt{x}]\). Recall that (page 22, item 1(f)! [x] is the greatest integer less than or equal to \(x \).

f. \(\tau(x) \) (this function is usually denote \(\tau(x) \) and is called Euler's function—your text denotes it \(\phi(x) \)) which is the number of positive integers less than \(x \) which are relatively prime to \(x \). (We say that \(x \) and \(y \) are relatively prime if \(HCF(x, y) = 1 \).)

Question 4 (C 2.5 1) Suppose that \(f(x) \) is a total injective computable function. Prove that \(f^{-1} \) (the inverse of \(f \)) is computable.

Question 5 Thought question: where does your proof in the last question break down if \(f \) is not total? Where does it fail if \(f \) is not injective?

Question 6 Let the \(A(n) = \psi(n, n) \), for Ackerman’s function \(\psi \) on page 46 of Cutland. Make a table for \(A(n) \) for as many values as you can stand.